A technological revolution is coming: will we be ready?

A technological revolution is coming: will we be ready?

A photonic chip, like an electronic chip, but instead of being filled with electricity, it's filled with light.

This article was originally published in The Australian and New Zealand Optical Society (ANZOS) May Newsletter.

 

We are on the cusp of a revolution in the semiconductor industry 

Integrated electronic chips are everywhere – from our computers and smart phones to our washing machines and cars. They are tiny, reliable and often very energy efficient. They do all this while being mind-bogglingly complex on the inside, yet remain cheap and accessible to just about everyone. In short, they are the basis of the most sophisticated industry we have ever known.   

Integrated photonic chips – those that use light instead of electricity – have been researched for decades with the hope that we could achieve the same benefits for optical systems. For some time now, these have been scientifically and technologically feasible. However, while there are many important applications for photonic chips, no single application has needed them so badly to justify the massive investment to make them an industrial reality.  

Until now.  

A new era: Electronics and photonics made to work together 

The internet is continuing to grow exponentially and now every user of the internet is demanding access to AI tools. This is putting enormous pressure on our data centres. The electronic chips are keeping pace – growing exponentially in complexity and capacity on the inside – but using traditional wires to get information into and out of the chips is too slow and inefficient. The only way to interface the next generation of electronic chips is with light. For this reason, the electronics industry is finally taking photonics seriously. Electronics needs photonics to keep growing.  

Over the last year, companies like Intel and Cisco have begun working with mainstream manufacturers like Global Foundries to make chips with both photonics and electronics on them. These hybrid integrated photonic/electronic chips are just hitting the market.  

We are on the cusp of a revolution in the semiconductor industry – low-cost, complex photonic systems that can be mass-manufactured are coming. But could they do more than just act as gateways to connect electronics to the outside world? What other opportunities could photonic chips unlock?  

Unlocking the world’s most precise measurement tool for real-world applications 

If there was a global manufacturing pipeline for photonic chips, we could realise low-cost and readily accessible optical systems that enable self-driving cars to see, help drones navigate and even check if fruit is ripe before harvesting.  

We believe that one particular transformational opportunity for photonic chips lies in the optical frequency comb.  

The optical frequency comb, the most precise measurement tool ever created, is poised to have a significant impact in various fields. This device was invented about 20 years ago and enabled highly accurate measurement of laser light frequency, surpassing electronic methods by many orders of magnitude. This breakthrough has led to significant advancements, including precise timing, mapping and navigation, and the search for Earth-like planets around sun-like stars. 

But its potential still hasn’t been fully realised. 

Despite being an extraordinary scientific instrument, the optical frequency comb’s real-world impact has been limited by its size, complexity and cost. This is because each comb is a complex system requiring a vast array of different optical components and highly sophisticated analogue and digital electronics – typically the size of a suitcase and with a six-figure price tag. 

The optical frequency comb (the world’s most precise measurement tool) remains too bulky, complex and expensive to be accessible for real-world applications. (Our COMBS Science Communicator Rachael Vorwerk is here for scale!).

Making the world’s most accurate measurement tool accessible to all  

The coming photonic chip revolution presents a solution. It will soon be possible to integrate all the elements of an optical frequency comb onto a single chip, including the photonics, analogue and digital electronics. And it will be done in a way that can scale to low-cost mass manufacture.  

These integrated optical frequency combs – called microcombs – will put precision measurement systems in the hands of almost everyone – in a form factor similar to that of a mobile phone. 

By leading the way in exploring the potential of photonic chip microcombs, we can ride this wave to achieve scientific breakthroughs and lay the foundation for new tech industries in Australia and New Zealand with global reach.  

What new technologies might be possible with such ubiquitous precision? Our Australian Research Council Centre of Excellence in Optical Microcombs for Breakthrough Science (COMBS) is on a quest to find out!    

Stay in touch 

We will be contributing regularly to ANZOS News with stories showing the capabilities and potential of microcombs spanning an extraordinary range of end-use scenarios. We look forward to sharing our progress with you.  

We are building our Centre, and are currently hiring both Postdocs and PhD students. Follow us on LinkedIn to see our latest available positions. 

 

The Australian and New Zealand Optical Society (ANZOS) is a non-profit organisation for the advancement of optics in Australia and New Zealand. Consider joining the society here https://optics.org.au/join-us

Our team at the ARC Centre of Excellence in Optical Microcombs for Breakthrough Science (COMBS), aiming to make optical frequency comb technology as cheap, readily available and accessible as today’s consumer electronics.

International Day of Light: What could life be like in the year 2031?

International Day of Light: What could life be like in the year 2031?

Drones hovering over orchards detecting whether fruit is ripe - what could life be like in seven years thanks to our Centre?

Breath tests for disease detection and an alternative to GPS – we asked our researchers to predict the impact of their work in seven years this International Day of Light!

Just as our computers have become smarter, smaller and cheaper over time thanks to integrated circuit or ‘microchip’ technology, what could we achieve if we integrated the world’s most accurate measurement tool?

What impact do we imagine our Centre will have in seven years? We asked our researchers to predict the impact of their work by 2031.

Celebrating our women at COMBS

Celebrating our women at COMBS

International Women's Day 2024

From using our fibre networks to monitor earthquakes, making optical fibres in space, and using laser light to detect diseases from our breath before there are any symptoms – this International Women’s Day – and our first since the commencement of the ARC Centre of Excellence in Optical Microcombs for Breakthrough Science (COMBS) – I am so pleased to be celebrating the amazing research being led by the women in our Centre.

I’d encourage you to follow these outstanding researchers to find out more about their amazing work and how we are working together to achieve our COMBS vision.

Our Chief Investigators: Meghan S. MillerJean BrodieIrina KabakovaBaohua Jia and Heike Ebendorff-Heidepriem.

Our Associate Investigators: Dawn TanAmanda BerryBao Yue ZhangBlanca del Rosal RabesVoonhui Lai and Sarah Scholten.

Our Partner Investigators: Andrea Blanco RedondoAleksandra FoltynowiczChristelle MonatVictoria ColemanNina Lioznov and Alessia Pasquazi.

Our Centre Team: Nicci CoadRachael Vorwerk and Angela G.

(Please feel free to tag people in the comments if I’ve missed anyone! )

Improving Equity Diversity and Inclusion (EDI) in STEM is a major objective of our centre. We have established our EDI Committee (co-chaired by Sumeet Walia and Heike Ebendorff-Heidepriem), and have defined and are now using recruitment guidelines following best practice. We have pretty good balance in many areas of the Centre but (as is often the case) there is work to be done for our more senior roles. I believe it is particularly important to use our COMBS as a platform to help create more senior and ongoing roles for Women in STEM at our university nodes. We are grateful to be able to follow the pioneering and highly effective work of ASTRO 3D – ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (we hope we can do as well as you have!).

We also want to try new things over the lifetime of the Centre, learn what works and what doesn’t, and advance the frontier in EDI and particularly for Women in STEM. (If you have any ideas or want to get involved, feel free to reach out – we would love to learn more!).

  • Astrocombs
  • Information and Intelligence
  • Microcomb Science and Technology
  • Sensing and Measurement
  • Spectroscopy and Microscopy